Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros

Ano de publicação
Tipo de documento
Intervalo de ano
2.
medrxiv; 2022.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2022.11.21.22281000

RESUMO

BACKGROUND VLPCOV-01 is a lipid nanoparticle-encapsulated self-amplifying (sa) RNA vaccine that expresses a membrane-anchored receptor-binding domain (RBD) derived from the SARS-CoV-2 spike protein. METHODS A phase 1 study of VLPCOV-01 was conducted at Medical Corporation Heishinkai OPHAC Hospital, Japan. The investigational vaccines were administered to participants, between February 16, 2022, and March 17, 2022. Participants aged 18 to 55 or [≥]65 years who had completed two doses of the BNT162b2 mRNA vaccine 6 to 12 months previously were randomised to receive one intramuscular vaccination of 0{middle dot}3, 1{middle dot}0, or 3{middle dot}0 {micro}g VLPCOV-01, 30 {micro}g BNT162b2, or placebo. Solicited adverse events were collected up to 6 days post-administration, with follow-up on all adverse events until week 4. Interim immunogenicity analyses following data cutoff at day 29 included SARS-CoV-2 IgG and neutralising antibody titres. (The trial is registered: jRCT2051210164). FINDINGS 92 healthy adults were enrolled, with 60 participants receiving VLPCOV-01. No serious adverse events were reported up to 26 weeks, and no prespecified trial-halting events were met. VLPCOV-01 induced robust IgG titres against SARS-CoV-2 RBD protein that were maintained up to 26 weeks in non-elderly participants, with geometric means ranging from 5037 (95% CI 1272-19,940) at 0{middle dot}3 {micro}g to 12,873 (95% CI 937-17,686) at 3 {micro}g, in comparison to 3166 (95% CI 1619-6191) with 30 {micro}g BNT162b2. Among elderly participants, IgG titres at 26 weeks post-vaccination with 3 {micro}g VLPCOV-01 were 9865 (95% CI 4396-22138) compared to 4183 (95% CI 1436-12180) following vaccination with 30 {micro}g BNT162b2. Pseudovirus-Neutralising antibody responses were observed against multiple SARS-CoV-2 variants and strongly correlated with anti-SARS-CoV-2 IgG (r=0{middle dot}950, p<0{middle dot}001). INTERPRETATION VLPCOV-01 is immunogenic following low dose administration, with anti-SARS-CoV-2 immune responses comparable to BNT162b2. These findings support further development of VLPCOV-01 as a COVID-19 booster vaccine and the potential for saRNA vectors as a vaccine platform. FUNDING Supported by AMED, Grant No. JP21nf0101627.


Assuntos
Síndrome de Resistência a Andrógenos , COVID-19
3.
researchsquare; 2022.
Preprint em Inglês | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1364513.v1

RESUMO

Understanding the T-cell responses involved in inhibiting COVID-19 severity is crucial for developing new therapeutic and vaccine strategies. Here, we characterized SARS-CoV-2 spike-specific CD8+ T cells interacting with overlapping peptides on peripheral blood mononuclear cells from acute-phase COVID-19 patients. Relative to severe COVID-19, patients with mild COVID-19 had more frequent antigen-specific CD8+ T cells, and significantly increased SARS-CoV-2 spike-specific CD8+ T cells simultaneously expressing granzyme A, granzyme B, and perforin, suggesting that inducing highly cytotoxic CD8+ T cells during early infection suppresses COVID-19 severity. The BNT162b2 mRNA vaccine induced these antigen-specific CD8+ T cells in healthy donors, although lesser than in infected patients, and the induced subpopulation was not maintained long-term after second vaccination. Importantly, these CD8+ T cells showed cross-reactivity with the Delta and Omicron strains of SARS-CoV-2. Incorporating factors that efficiently induce CD8+ T cells with polyfunctional cytotoxic activity may improve future vaccine efficacy against such variants.


Assuntos
COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA